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ABSTRACT: The paper presents an analysis of laminar flow of a film
of viscoelastic fluid flowing under gravity down an infinite inclined
plane. It is assumed that the mechanical behavior of the fluid can
be represented by a generalized Maxwell model, whose constitutive
equation containg a time derivative of the deviator of the stress tensor
in the Jaumann sense [1, 2]. The equations of motion of the visco~
elastic fluid considered here admit an exact solution for the case of
rectilinear laminar flow with a plane free boundary. The stability

of this flow with respect to surface waves is investigated by the
method of successive approximations described in [3, 4].

1. The viscoelastic flow of several real fluids can be approxi-
mately described by the generalized Maxwell model [2]
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Here sji are the components of the deviator of the stress tensor, v;
are the components of the velocity vector, i is the coefficient of
viscosity, A is the relaxation time, and xj are rectangular Cartesian
coordinates.

The viscoelastic flow of a relaxing fluid with finite rates of
strain is governed by (1.1) and the equations of motion
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Here Fy, are the projections of the body force, p is the density, and
p* is the hydrostatic pressure. To analyze the stability of the flow
of a film of thickness d flowing under the action of gravity down a
plane inclined at an angle B with respect to the horizontal, we intro-

duce the dimensionless variables
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where g is the acceleration of gravity.
In the case of two-dimensional unsteady flow with Fy = pg sin 8,
Fg = pg cos B, F3 =0, Egs. (1.1), (1.2) take the form
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These equations are satisfied by the relations
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which describe the steady flow of a film with a plane stress-free sur-
face, flowing under gravity down an inclined plane, with the no-slip
condition at the plane y = 1 (Fig. 1).

Fig. 1

From (1.4) it can be seen that rectilinear flow of the film is
possible when 7 < 1/6. When T = 0, equations (1.4) describe the
flow of a film of Newtonian fluid [4].

We expand the velocity u® (y, 1) in a power series of the small
parameter T, and truncate the expansion of each expression in (1.4)
after the 72 term. The result is
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2. We proceed to investigate the stability of solution (1.5) with
respect to two-dimensional perturbations. Consider a two~dimension-
al unsteady flow of the form
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Here u°, p°, syx'» Sxyn are parameters of the basic flow (1.5), and
U, Syx's Sxy' s V. P' are the two-dimensional perturbations.

At the perturbed free surface y = n(t, x) we have the kinematic
and dynamic conditions [4]
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Here v is the outer normal to the free surface, and T is the coefficient
of surface tension.

At the surface y = 1 we have the conditions u' (1, x, 1) = 0,
V' (t, X, 1) = 0. We linearize (1.1), (2.2), taking account of (1,5)
and (2.1). Introducing the perturbation stream function by means of
the definitions u* =9¥/3y, v = —3¥/8x, we represent the perturba-
tions in the form
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The variables f(y), ¢ (y), sxx* (y). Sxy* (y) are determined by the
system
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This system takes into account all terms up to and including 72. The
boundary conditions (2, 2) yield the relations
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Eliminating f(y) from (2. 8), we obtain an equation for ¢ (y)
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Here sy and s‘,'(y have the form given in (2. 8).
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Using the first equation in (2. 3), we eliminate f(0) from the
boundary condition (2.4). The boundary condition for equation (2.5)
at y = 0 is then
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The conditions u' (t, X, 1) = v' (t, x, 1) = 0 yield
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The problem of solving (2.5) with the boundary conditions (2.6),
(2.7) leads, as is well known [4], to the problem of finding ¢ = ¢ (R,

a, 8, T).
3. Tofind ¢ = c (R, a, 8, T} for small « we expand ¢ and ¢ in
terms of the parameter a:
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Substitute (3. 1) into (2.5)=(2.7) and (2.3). For a = 0 we obtain
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From (3. 2) we find [4] the solution to the zeroth approximation
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The variable ¢’ (y) is then determined by the equation
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Integrating (3.4), taking into account (3.3) and the boundary con-
ditions (3.5), we find
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Here, as everywhere else, we neglect terms of orders higher than
2,

For small o we retain the two leading terms in the expansions.
We obtain then ¢ = ¢* + ac', where ¢® and ¢' are given by (3.3) and
(2.8). Equating the imaginary part of ¢ with zero, we find

o [8;R (1 + 9.121%) — (1 — 3.307%) ctgP +
3t — Yg@?RS (1 — 3.301%)] = 0, (3.7

For 8 = const, Eq. (3.7) defines a neutral surface in the R, o, M
space. This surface consists of the plane a = 0 and the surface
ABCDE, which intersect along the parabola (Fig. 2)
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The portion EA of the parabola (3.8) is a branching line of the neutral
surface.

For T = A = 0 we have in the a, R plane a neutral curve, con-
sisting of the axis & = 0 and the line ED. The branch point E defines
then [4] the minimal critical value R = 5/6 ctg B for S = 0.

From (3.7) one can see that when S = 0 the inequality
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must hold on the surface ABCDE if « is to be real. Therefore for
small « the surface ABCDE canriot intersect the o axis.

Taking account of (3.6) one can easily see that when T < 1/8,
S = 0, the values of ¢j are negative for o > a g (o are the values of
o on the surface ABCDE) and positive for a < ay.

Taking into account that X = /G, where G is the elastic shear
modulus, we find from (1. 3) that T is independent of y. Therefore,
if = 0 because of G = «, then for R = 0, p = » we find [4] that the
surface ABCDE does not intersect the « axis in the case § = 0, For.
S = 0 the surface ABCDE intersects the o axis at & = .

For a Newtonian fluid (G = =) the branch point E of the neutral
curve coincides with the origin for 8 = m/2. For a viscoelastic fluid
with G = const # «, the Reynolds number is equal to zero at the
branch point of the neutral curve when

v A= 1/17.25 [— 2.50 + (6.25 + 2.88ctg? B) ] tg B.

Consequently, in the case of a Newtonian fluid the critical
Reynolds number is equal to zero for flow on a vertical plane (8 = /%),
whereas in the case of a viscoelastic fluid the critical Reynolds number
is equal to zero for B = arc ctg (37). Thus, for example, for 7= 0.1
the critical Reynolds number is equal to zero for flow along a plane
inclined at g = 73" with respect to the horizontal,

Fig. 2 shows the neutral surface for the case § # 0. The equa-
tions of motion (1.3) have an exact solution, corresponding to recti-
linear laminar flow, for T < 1/6, and this flow is stable with respect
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to two-dimensional perturbations in the region between the planes
o =0, 7=0, R=0 and the surface ABCDE. The plane ¢ = 0 and
the surface ABCDE are a neutral surface, whose branching line EA is
an arc of the parabola (3. 8) in the plane a = 0, The parabola has
an axis parallel to the R axis, and its vertex is at the point F, whose
coordinates are

a=0, R=083ctgh-0.18tgB, 7=—0.15tgh.

The flow of a film of viscoelastic fluid is less stable than the
flow of a Newtonian fluid with the same viscosity.
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